PHYSICAL REVIEW E VOLUME 52, NUMBER 1 JULY 1995

Analytic approach to the problem of convergence of truncated Lévy flights
towards the Gaussian stochastic process
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An analytic expression for characteristic function defining a truncated Lévy flight is derived. It is
shown that the characteristic function yields results in agreement with recent simulations of truncated
Lévy flights by Mantegna and Stanley [Phys. Rev. Lett. 73, 2946 (1994)]. With the analytic expression
for the characteristic function, the convergence of the Lévy process towards the Gaussian is demonstrat-
ed without simulations. In the calculation of first return probability the simulations are replaced by nu-

merical integration using simple quadratures.

PACS number(s): 05.40.+j, 02.50.—r

Lévy flights [1,2] and Lévy walks [3,4] are applied in
modeling physical systems with spatiotemporal fractality
(for review, see Ref. [2]). The characteristic feature of
Lévy flight is that it does not converge to the Gaussian
stochastic process, instead it is “attracted” towards the
Lévy stable process with infinite variance [2]. In Lévy
walks the requirement of finite variance of the process is
met by introducing spatiotemporal coupling [4]. Howev-
er, a more direct way to retain the finite variance is by
means of truncated Lévy flight, where an upper cutoff to
the values of random variables is introduced [5].

The general statistical properties of truncated Lévy
flights have been studied recently by Mantegna and Stan-
ley [5]. In their simulations they observed a clear but
slow transition from the Lévy to the Gaussian process.
The convergence was so slow that a huge number of in-
dependent events (a long time) was needed to observe de-
viations from Lévy stable process, first apparent only in
the very far wings of the probability density distribution
[5]. In this Brief Report a treatment based on an analyti-
cal approach is given, paralleling the simulation study of
Mantegna and Stanley. Instead of the abrupt truncation
employed in Ref. [5], a smooth exponential regression to-
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where c=t(A  +A4_)w cos(mv/2)/[vI'(v)sin(mv)] is a
scaling factor and c,=A"/cos(mv/2) takes care of the
normalization of P(x). The asymmetry of the process is
defined by the parameter f=(A,  —A_)/(A, +A4_).
The distribution P (x) is now uniquely determined by the
analytic expression in Eq. (3), and accurate numerical
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wards zero is introduced. This makes it possible to derive
an analytic expression for characteristic function and en-
ables one to replace simulations by more straightforward
calculations. Because the present report supplements the
more thorough work of Mantegna and Stanley the expo-
sition is brief and concise.

The truncated Lévy flight with smooth cutoff is gen-
erated by random variables {z} with distribution

A_e M|g|=1=v <0
fl2)= A+e_}"z_1_", z20, (1)

where the characteristic exponent is in the range
0<v<2. For values v=2 one obtains the Gaussian pro-
cess. The limit distribution P(x) [6] of the sums of ran-
dom variables {z} in the Poissonian stochastic process is
defined by the characteristic function [7]

mP(k)=—t [ (1—e ™*)f(2)dz . )

The characteristic function given by Egs. (1) and (2) can
be expressed in a compact form if 0 <v <2, but v#*1 [8].
The lengthy but straightforward calculation yields
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values for P(x) can be calculated Fourier-transforming
P(k) numerically, using adaptive quadratures designed
for oscillating integrals (e.g., routine DO1AKF in the
NAG library). An example of the calculated symmetric
distribution for v=0.5 is given in Fig. 1, demonstrating
clearly the convergence towards the Gaussian process.
The transition from the Lévy stable process to the
Gaussian one becomes evident from the closer inspection
of characteristic function. For simplicity the study is re-
stricted to the symmetric cases =0 only. The probabili-
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FIG. 1. Probability density distribution P(x) obtained for
characteristic exponent v=0.5 and A=0.05. Variable x is
scaled by variance o given in Eq. (5) in order to enhance the
convergence towards the Gaussian. Profiles are shown for
scaled times 2 4t =0.5, 1, 2, 5, 10, and 100 (from top to bottom
at origin). Sharp profiles at short times are close to the Lévy
stable distribution, and at the longest time shown the profile is
nearly identical to the Gaussian.

ty density P(x) at long times is determined by the asymp-
totic form of P(k) at small values of k,

InP(k)=~—LoX1)k?, @)
where the variance can be calculated from the charac-
teristic function,
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Equation (4) is the signature of the Gaussian distribution.
The convergence to the Gaussian process is caused by the
screening factor, which makes f(z) decrease faster than
z 73 for large values of z. In the Gaussian regime the first
return probability P(x =0) is given by

1
V2ma(t)
At short times the screening has no essential effect on
P(x) and the distribution P(x) is generated by the for-

mula of Lévy and Khintchine [7], obtained in the limit
A—0,

P(x =0)= oy T1/2 (6)
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FIG. 2. The probability of first return P(x =0) for values
v=0.50, 0.66, 0.95, and 1.50 (from top to bottom). In all cases
A=0.05. The probability P(x) is multiplied by variance o
given by Eq. (5), enhancing the convergence towards the Gauss-
ian, signalled by the approach to a constant value (27)!/2. At
short times the values o P(x =0) are proportional to ¢!/27!/¥, in
agreement with Eq. (8). In the inset is shown the effect of pa-
rameter A on the convergence. Results for A=0.05, 0.05, and
0.005 are shown (from left to right) for v=0.5.

In this regime the probability of first return of the sym-
metric process (8=0) is given by
1/v

) (®)
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signaling now the dominance of Lévy stability. These
asymptotic results are identical (apart the constant factor
due to parametrization) to results given by Mantegna and
Stanley. At intermediate times the probability of first re-
turn is calculated by quadratures using the analytic ex-
pression in Eq. (3). Results for some representative cases
are shown in Fig. 2, where asymptotic regions and the
smooth transition between them are clearly exposed.

In conclusion, we have modified the truncated Lévy
flight model of Mantegna and Stanley in such a way as to
allow an analytical calculation of the characteristic func-
tion and determination of the complete probability densi-
ty distribution by simple quadratures. Using only the
characteristic function the existence of a smooth but slow
transition of the Lévy stable process towards the Gauss-
ian process can be demonstrated. Furthermore, many
properties of interest can be derived directly from the
characteristic function, e.g., the variance and probability
of first return, in agreement with the simulation results.
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